Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry
نویسندگان
چکیده
[1] We use an Earth system model of intermediate complexity, CLIMBER-2, to investigate what recent improvements in the representation of the physics and biology of the glacial ocean imply for the atmospheric concentration. The coupled atmosphere-ocean model under the glacial boundary conditions is able to reproduce the deep, salty, stagnant water mass inferred from Antarctic deep pore water data and the changing temperature of the entire deep ocean. When carbonate compensation is included in the model, we find a CO2 drawdown of 43 ppmv associated mainly with the shoaling of the Atlantic thermohaline circulation and an increased fraction of water masses of southern origin in the deep Atlantic. Fertilizing the Atlantic and Indian sectors of the Southern Ocean north of the polar front leads to a further drawdown of 37 ppmv. Other changes to the glacial carbon cycle include a decrease in the amount of carbon stored in the terrestrial biosphere (540 Pg C), which increases atmospheric CO2 by 15 ppmv, and a change in ocean salinity resulting from a drop in sea level, which elevates CO2 by another 12 ppmv. A decrease in shallow water CaCO3 deposition draws down CO2 by 12 ppmv. In total, the model is able to explain more than two thirds (65 ppmv) of the glacial to interglacial CO2 change, based only on mechanisms that are clearly documented in the proxy data. A good match between simulated and reconstructed distribution of dC changes in the deep Atlantic suggests that the model captures the mechanisms of reorganization of biogeochemistry in the Atlantic Ocean reasonably well. Additional, poorly constrained mechanisms to explain the rest of the observed drawdown include changes in the organic carbon:CaCO3 ratio of sediment rain reaching the seafloor, iron fertilization in the subantarctic Pacific Ocean, and changes in terrestrial weathering.
منابع مشابه
Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum
We use a state-of-the-art ocean general circulation and biogeochemistry model to examine the impact of changes in ocean circulation and biogeochemistry in governing the change in ocean carbon-13 and atmospheric CO2 at the last glacial maximum (LGM). We examine 5 different realisations of the ocean’s overturning circulation produced by a fully coupled atmosphere-ocean model under LGM forcing and...
متن کاملBiology-mediated temperature control on atmospheric pCO2 and ocean biogeochemistry
[1] The remarkable correspondence between glacialinterglacial changes in atmospheric CO2 levels and global climate over much of the Pleistocene suggests that CO2 is also a key climate change driver. However, there is as yet no widely accepted explanation of the low glacial CO2 levels. Here I use an intermediate-complexity climate model to show that glacial cooling, acting on the rates of organi...
متن کاملThe impact of changes in the ocean's biological pump on atmospheric CO2
The impact on atmospheric CO2 of iron fertilization induced changes in the ocean’s biological pump X. Jin, N. Gruber, H. Frenzel, S. C. Doney, and J. C. McWilliams Institute of Geophysics and Planetary Physics (IGPP), UCLA, Los Angeles, CA 90095, USA Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland IGPP and Department of Atmospheric and...
متن کاملImpact of oceanic circulation on biological carbon storage in the 1 ocean and atmospheric p CO
We use both theory and ocean biogeochemistry models to examine the role 3 of the soft-tissue biological pump in controlling atmospheric CO2. We demonstrate that 4 atmospheric CO2 can be simply related to the amount of inorganic carbon stored in the 5 ocean by the soft tissue pump, which we term (OCSsoft). OCSsoft is linearly related 6 to the inventory of remineralized nutrientwhich in turn is j...
متن کاملImpact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2
[1] We use both theory and ocean biogeochemistry models to examine the role of the soft-tissue biological pump in controlling atmospheric CO2. We demonstrate that atmospheric CO2 can be simply related to the amount of inorganic carbon stored in the ocean by the soft-tissue pump, which we term (OCSsoft). OCSsoft is linearly related to the inventory of remineralized nutrient, which in turn is jus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007